ترتیب بر اساس: جدیدترینپربازدیدترین
فیلترهای جستجو: فیلتری انتخاب نشده است.
نمایش ۲۱ تا ۴۰ مورد از کل ۲٬۸۹۲ مورد.
۲۱.

Determinants of Online Impulse Buying Among Young Adults in Kuala Lumpur, Malaysia: A Study on Eco-Friendly Food and Beverage Utensils(مقاله علمی وزارت علوم)

نویسنده:

کلیدواژه‌ها: Online Impulse buying Eco-Friendly Products Sustainability Young adults

حوزه‌های تخصصی:
تعداد بازدید : ۱۱۶ تعداد دانلود : ۹۵
Eco-friendly product usage is a defining trend in consumer purchase intentions during this decade. Younger, tech-savvy consumers are often more sensitive to environmental concerns when purchasing products due to the abundance of information available on social media platforms. In the food and beverage industry, this trend has led many younger consumers to prefer purchasing eco-friendly, sustainable cutlery for food and beverage consumption. With online social commerce platforms selling eco-friendly utensils readily available, a larger group of consumers, primarily young adults, seem to purchase these products impulsively due to various factors. The four independent variables proposed in this study that seem to influence the online impulse buying behavior of young adults toward these eco-friendly products are fear, serendipity, electronic word of mouth (eWOM), and website quality. Convenience sampling was utilized to gain a greater understanding of the targeted consumer group, using a 5-item Likert scale to collect data from respondents. The validity and reliability of the questionnaire items were further confirmed using statistical methods, namely average variance extracted (AVE), composite reliability (CR), and Cronbach’s alpha. The hypotheses were tested using AMOS software (version 24) through confirmatory factor analysis (CFA) to tabulate the results. Based on the study conducted, it is concluded that fear and eWOM do influence the online impulse buying of eco-friendly food utensils among young adults in Kuala Lumpur. It is further suggested that elements such as fear and eWOM play a significant role in online impulse purchases of eco-friendly utensils, as young adults rely heavily on social media marketing. This reliance contributes to these consumers’ growing concern for their future, prompting them to be more environmentally conscious.
۲۲.

Corporate Digital Transformation: A Comprehensive Definition and Conceptual Framework for Enhancing Business Performance(مقاله علمی وزارت علوم)

کلیدواژه‌ها: Corporate Digital Transformation Digital Transformation Key Drivers Digital Transformation Defini-Tion Business performance Content Analysis

حوزه‌های تخصصی:
تعداد بازدید : ۶۱ تعداد دانلود : ۴۸
This study aims to analyze 45 definitions of digital transformation (DT) to identify key drivers and propose a conceptual framework to outline their impact on business performance. Through content analysis, 24 key drivers were identified, focusing on the frequency of occurrence across the definitions. The analysis highlights drivers such as IT technologies & innovation, business model, business performance, customer experience, and operational processes. The results show a significant emphasis placed on various drivers of DT, reflecting its multidimensional nature. Key drivers include technological innovation, organizational adaptation, customer-centric strategies, and change management practices. By conceptualizing the relationships between key drivers and performance outcomes, the proposed conceptual framework provides theoretical insights into the mechanisms underlying digital transformation and its impact on business performance. The proposed framework integrates technological, strategic, organizational, and cultural dimensions. The analysis underscores the complexity and multidimensional nature of DT as a strategic phenomenon and offers drivers on which the organizations should focus to face the challenges of digital disruption. This paper's original theoretical contribution lies in synthesizing various definitions of digital transformation from the past two decades to propose a comprehensive definition of Corporate Digital Transformation.
۲۳.

Readiness for Artificial Intelligence Adoption in Malaysian Manufacturing Companies(مقاله علمی وزارت علوم)

کلیدواژه‌ها: Technology Readiness TOE Artificial Readiness Artificial Intelligence

حوزه‌های تخصصی:
تعداد بازدید : ۱۸۲ تعداد دانلود : ۹۹
The advancement of artificial intelligence (AI) and its growing societal importance are reshaping decision-making processes and policy analysis roles. This study examines the readiness of manufacturing companies in Malaysia to embrace AI technology, considering its potential to enhance decision-making, productivity, quality control, job automation, and data analysis. Focusing on the Technology, Organization, and Environment (T-O-E) readiness framework, the research investigates the relationship between these dimensions and AI adoption readiness among manufacturing companies in Shah Alam, Selangor, Malaysia. AI adoption readiness serves as the dependent variable, while technological, organizational, and environmental readiness dimensions act as independent variables. The study applies the T-O-E framework to AI readiness and proposes a framework for assessing AI readiness at the manufacturing level. It identifies factors influencing readiness within the technological, organizational, and environmental dimensions, including relative advantage, compatibility, resources, competitive pressure, top management support, and government regulations. Through rigorous analysis, patterns, trends, and correlations are revealed, highlighting a significant link between the T-O-E readiness dimensions and AI adoption readiness. Notably, organizational readiness emerges as a key driver of AI adoption in Malaysian manufacturing companies. The results of this investigation have broad implications, offering suggestions to improve organizational preparedness and unlock AI’s potential benefits for businesses in the industrial sector. Additionally, the research lays the groundwork for further studies on AI readiness across various industries and international contexts. As AI becomes increasingly integrated into manufacturing processes, adaptive businesses gain competitive advantages on a global scale. These advantages include increased productivity, informed decision-making, streamlined quality control, improved customer satisfaction, and potential contributions to economic growth. The study concludes by recommending strategies to reinforce organizational readiness and emphasizes the need for future research to deepen understanding of AI adoption readiness in the manufacturing industry. The integration of AI technology offers benefits such as enhanced productivity, decision-making, quality control, and customer satisfaction, granting businesses a competitive edge in the digital landscape and increasing stakeholder interest.
۲۴.

The Intersection of Quantum Computing, Artificial Intelligence and Financial Risks: A Bibliometric Analysis of the Modern Financial Sector(مقاله علمی وزارت علوم)

کلیدواژه‌ها: Quantum Computing Financial risk Artificial Intelligence bibliometric analysis

حوزه‌های تخصصی:
تعداد بازدید : ۷۱ تعداد دانلود : ۴۴
The finance sector is experiencing substantial technological disruption as Quantum Computing and Artificial Intelligence (AI) continue to advance at a rapid pace. This study employs bibliometric analysis, specifically VOS Viewer, to investigate the academic environment at the intersection of financial risk, AI, and quantum computation. From 2014 to 2023, a comprehensive bibliometric analysis was performed on a total of 145 journal articles that were published in Scopus and Web of Sciences (WoS). Articles are categorized based on their homogeneity in the disciplines of Quantum Computing, Financial Risk, and AI, as well as their interdisciplinary compositions. The results, which include authorship trends, keyword dynamics, and linked works, are analyzed and presented. This extensive bibliometric analysis offers critical insights into contemporary research and pinpointing areas necessitating further exploration. As quantum computers and AI algorithms become more sophisticated, this paper investigates the potential weaknesses and issues that financial institutions may encounter. By analyzing the intersection of two transformative technologies, the report offers critical insights into the discourse surrounding the safeguarding of financial systems in the quantum era. The analysis not only enhances the quality of the review but also directs researchers to significant papers and identifies regions of publications, thereby facilitating a more comprehensive understanding of the research environment.
۲۵.

Predicting Heart Disease Using Automated Machine Learning Based on Genetic Algorithms(مقاله علمی وزارت علوم)

کلیدواژه‌ها: Heart Disease Prediction Automatic Machine Learning Genetic Algorithms TPOT Framework

حوزه‌های تخصصی:
تعداد بازدید : ۶۴ تعداد دانلود : ۴۱
This study aims to apply automatic machine-learning approaches using genetic algorithms to enhance heart disease prediction. Heart disease has remained the major cause of mortality in the world, necessitating an effective and timely diagnosis. Most current diagnostic and assessment processes are lengthy and expensive, relying heavily on clinical expert knowledge. To help address these issues, machine learning approaches, which derive their utility from examining substantial datasets for the recognition of patterns, have emerged as a potential solution, providing solutions beyond those achievable by human recognition alone. Genetic algorithms are also suited to addressing these issues as they mimic natural evolution to perfect high-caliber machine-learning models, feature selection, and parameter selection in machine-learning applications. This study examines the utilization of genetic algorithms working alongside AutoML frameworks to improve accuracy in heart disease predictions. Reducing to the best combination of attributes and the optimum parameters for each attribute is a time-consuming task, so automating this aspect of the process allows for more accurate and prompt predictions, consequently reducing the manual work. The AutoML approach followed in this research is TPOT, which uses genetic algorithms to ascertain optimally designed machine-learning pipelines. The application of AutoML, together with genetic algorithms, is the most prominent finding that yields a significant improvement in the quality of the predictions for heart disease compared to the traditional assessment approaches, with an accuracy of 93.8%. This approach will enhance diagnostic accuracy and enable early diagnosis, thereby reducing the likelihood of misdiagnoses or ineffective treatments and ultimately lowering associated costs.
۲۶.

Service Quality Performance of E-Hailing Services in Sarawak, Malaysia(مقاله علمی وزارت علوم)

نویسنده:

کلیدواژه‌ها: public transportation E-hailing industry PLS-SEM Sarawak

حوزه‌های تخصصی:
تعداد بازدید : ۱۶۲ تعداد دانلود : ۱۱۵
With the advancement of communication technology, e-hailing services are becoming more widespread in Malaysia. Even though e-hailing services offer relative advantages compared to other types of public transport, research on the service quality aspects and customer satisfaction is essential to ensure customers receive worthwhile service with the money they spend on the services. Therefore, the growth of the e-hailing sector in Malaysia has drawn attention from the government, service providers, passengers, and even academics to the issues of service quality and customer satisfaction. Much research on service quality has been conducted in Malaysia; however, limited research has yet to be done on e-hailing services specifically for the state of Sarawak (East Malaysia) compared to peninsular areas. Thus, this research aims to measure the service quality performance of e-hailing in Sarawak and investigate the factors influencing passenger satisfaction. Three hundred ninety-two e-hailing users voluntarily participated in the survey, which was conducted in 2023. The partial least squares structural equation modeling (PLS-SEM) was performed to assess the measurement and structural model. The analysis revealed that vehicle condition, customer service, and reliability have a significant one-percent relationship with passenger satisfaction. To ensure e-hailing vehicles are always in good condition, e-hailing companies and government agencies must make it mandatory for e-hailing cars to be maintained periodically. Next, the driver should improve communication skills and show a good attitude to provide excellent customer service. Besides, prompt response to customer orders is a must to ensure e-hailing services are reliable public transportation.
۲۷.

Utilizing Deep Learning for Aspect-Based Sentiment Analysis in Restaurant Reviews(مقاله علمی وزارت علوم)

کلیدواژه‌ها: deep learning text mining Sentiment Analysis Neural Network

حوزه‌های تخصصی:
تعداد بازدید : ۶۶ تعداد دانلود : ۴۸
Consumers rely on social media opinions to make product choices and purchases. With the popularity of web-based platforms like Tripadvisor, consumers express their opinions and feelings about food quality, service, and other aspects affecting restaurants through comments. Hence, analyzing these comments can be valuable for others to choose a restaurant or to improve and develop their products and brands. Sentiment analysis utilizes text mining methods to extract, identify, and study emotions and subjective perceptions. Since consumers can use comments to choose a restaurant, this study seeks to provide sentiment analysis of their reviews on the Tripadvisor website about Iranian restaurants. This study is applied in nature, aiming to analyze and manually label 4000 comments from the Tripadvisor website regarding restaurants in ten tourist cities across Iran. It uses a standard extended long short-term memory algorithm for sentiment analysis, a deep learning neural network, and Python text mining packages for modeling. The results indicate that the F-Measure for all aspects exceeds 80%, indicating sufficient efficiency and accuracy of the aspect-based sentiment analysis model for restaurant reviews. The most significant features for customers of Iranian restaurants are the food and the atmosphere. This study represents one of the initial efforts to analyze comments posted on the Tripadvisor website concerning Iranian restaurants. Business owners in the tourism industry, especially restaurant owners, can use the proposed model to automatically and quickly analyze customer feedback, improve performance, and gain a competitive edge. The proposed model can also assist users of online platforms in analyzing the opinions of others, enabling them to make informed decisions more efficiently.
۲۸.

تجزیه و تحلیل بازگشت دانش بازنشستگان در زنجیره تأمین پالایشگاه اصفهان با رویکرد تلفیقی مدل سازی ساختاری تفسیری و مدل سازی معادلات ساختاری(مقاله علمی وزارت علوم)

کلیدواژه‌ها: بازگشت دانش بازنشستگان دانش زنجیره تأمین مدیریت دانش

حوزه‌های تخصصی:
تعداد بازدید : ۳۸ تعداد دانلود : ۳۹
هدف: علی رغم اهمیت دانش بازنشستگان در رفع پیچیدگی ها و چالش های مختلف در زنجیره تأمین پالایشگاه از جمله ریسک های ناشی از نوسانات قیمت نفت و بازار، عدم همکاری و هماهنگی میان اعضای زنجیره تأمین، چالش های نفتی همچون نشت و آتش سوزی و ...، در سالیان اخیر حجم قابل توجهی از دانش با بازنشسته شدن کارکنان خارج شده است. هدف از انجام پژوهش حاضر تجزیه و تحلیل بازگشت دانش بازنشستگان در زنجیره تأمین پالایشگاه اصفهان است. روش پژوهش: پژوهش حاضر از لحاظ هدف، کاربردی و از نظر ماهیت و روش، توصیفی- علی و از نظر شیوه گردآوری داده ها، مطالعه غیرآزمایشی از نوع پیمایشی مقطعی است. در ابتدا 12 عامل مؤثر بر بازگشت دانش بازنشستگان بر اساس مرور پیشینه پژوهش شناسایی و به تأیید خبرگان دانشگاهی و صنعتی (پالایشگاه اصفهان) رسید. به منظور ارائه مدل مفهومی پژوهش از رویکرد مدل سازی ساختاری تفسیری استفاده شده است. در این بخش ابتدا پرسشنامه مقایسات زوجی میان عوامل اثرگذار بر بازگشت دانش بازنشستگان در زنجیره تأمین پالایشگاه اصفهان طراحی شد. سپس با استفاده از روش نمونه گیری قضاوتی و نظرخواهی از 15 نفر از خبرگان دانشگاهی و صنعتی، نحوه ارتباط میان عوامل مؤثر بر بازگشت دانش بازنشستگان شناسایی و مدل مفهومی ارائه شد. به منظور تأیید یا رد مدل مفهومی از رویکرد مدل سازی معادلات ساختاری و نرم افزار Smart PLS3 استفاده شده است. با استفاده از روش نمونه گیری در دسترس تعداد 300 پرسشنامه میان کارکنان و مدیران پالایشگاه اصفهان توزیع که از این میان تعداد 243 پرسشنامه بازگشت داده شد. روایی پرسشنامه پژوهش با استفاده از روایی همگرا (ضرایب بار عاملی و معیار AVE) و روایی واگرا (جدول فورنل- لارکر) تأیید شده است. همچنین پایایی پرسشنامه پژوهش با استفاده از معیارهای آلفای کرونباخ و پایایی ترکیبی مورد تأیید قرار گرفته است. یافته ها: نتایج این پژوهش نشان داد که حمایت دولت با ضریب مسیر 495/0 و دانش و تجربه بازنشستگان با ضریب مسیر 416/0 بر حمایت مدیریت ارشد و حمایت مدیریت ارشد با ضریب مسیر 789/0 بر مشوق های مالی و با ضریب مسیر 854/0 بر مشوق های غیرمالی تأثیرگذار است. علاوه بر این نتایج پژوهش نشان داد که مشوق های مالی با ضریب مسیر 383/0 و مشوق های غیرمالی با ضریب مسیر 522/0 بر فرهنگ حفظ و ارتقاء دانش سازمانی، فرهنگ حفظ و ارتقاء دانش سازمانی با ضریب مسیر 817/0 بر استفاده از فناوری های پیشرفته، استفاده از فناوری های پیشرفته بر مطلوبیت محیط کار با ضریب مسیر 787/0، مطلوبیت محیط کار با ضریب مسیر 805/0 بر مشارکت و همکاری کارکنان و مشارکت و همکاری کارکنان با ضریب مسیر 774/0 بر انسجام و ثبات سازمانی تأثیرگذار است. از دیگر نتایج این پژوهش می توان به تأثیر انسجام و ثبات سازمانی با ضریب مسیر 797/0 بر تسهیل ارتباطات و تأثیر تسهیل ارتباطات بر کیفیت محصولات و خدمات با ضریب مسیر 804/0 اشاره کرد. نتیجه گیری: نتایج پژوهش نشان داد که بازگشت دانش بازنشستگان نقش تعیین کننده ای در رفع چالش ها در زنجیره تأمین پالایشگاه اصفهان دارد. همچنین بر اساس مدل مفهومی ارائه شده از رویکرد مدل سازی ساختاری تفسیری، حمایت دولت و دانش و تجربه بازنشستگان به عنوان عوامل کلیدی در بازگشت دانش بازنشستگان در زنجیره تأمین پالایشگاه اصفهان شناسایی شده اند.
۲۹.

Sustainability Challenges of Lithium-Ion Battery Supply Chain: Evidence from the Indian Electric Vehicle Sector(مقاله علمی وزارت علوم)

کلیدواژه‌ها: Electric vehicles Environmental impact Lithium-ion batteries recycling Sustainability

حوزه‌های تخصصی:
تعداد بازدید : ۲۲۳ تعداد دانلود : ۱۳۰
This study critically examines the sustainability challenges within the lithium-ion battery (LIB) supply chain in India's electric vehicle (EV) sector, an area of growing importance due to the rapid expansion of EV adoption. While LIBs are essential for EVs due to their high energy density and reliability, their production and disposal pose significant environmental, social, and economic sustainability challenges. These include resource depletion, environmental degradation, ethical concerns in raw material sourcing, and inefficient recycling processes. This study adopts a qualitative case study approach, focusing on three leading Indian automotive companies, to explore these challenges in depth. Data were collected through semi-structured interviews with key stakeholders involved in various stages of the LIB supply chain, including production, waste management, and recycling. Key findings reveal that the primary environmental challenge is the lack of advanced green technologies for recycling and disposal, leading to high water and energy consumption, as well as hazardous waste emissions. Social challenges include unsafe labor practices, particularly in raw material extraction, and a shortage of skilled labor in battery recycling operations. On the economic front, the reliance on imported raw materials, coupled with high production and recycling costs, undermines the sector’s sustainability and profitability. The research contributes to the literature by providing a comprehensive understanding of the environmental, social, and economic dimensions of sustainability in the LIB supply chain. It also offers practical insights for stakeholders and policymakers aiming to foster a greener and more sustainable EV sector in India.  
۳۰.

Consumers’ Impulse Buying Behavior on E-Commerce Shopping Platforms: 7C Framework and Emotions(مقاله علمی وزارت علوم)

کلیدواژه‌ها: Impulse Buying Behavior 7C Framework emotions SOR

حوزه‌های تخصصی:
تعداد بازدید : ۲۳۸ تعداد دانلود : ۱۰۲
The world of digital marketing has been fast advancing in recent times. Marketers have developed various practices to attract consumers to their products and services. Online shopping applications have introduced different methods to encourage consumer impulse buying. However, past literature has overlooked the 7C framework, despite its introduction during the early stages of e-commerce development. Thus, this study aims to examine the dimensions of digital marketing and the mediating role of emotions on impulse buying behavior in e-commerce shopping platforms. This study used the Stimulus-Organism-Response (SOR) framework as the underpinning theory for developing the proposed framework. The 7Cs framework, serving as the stimulus (S), includes content, context, commerce, customization, connection, communication, and community. Emotions represent the organism (O), while impulse buying behavior is the response (R). A survey was conducted to collect data from 331 shoppers from two major online platforms in Malaysia. Exploratory Factor Analysis was performed and revealed six dimensions of digital marketing. Furthermore, it was found that emotions partially mediate the relationship of (a) context, (b) connection, and (c) commerce on impulse buying behavior. Emotions fully mediate the relationship between (a) communication and (b) customization on impulse buying behavior. This study enhances the understanding of the 7C framework, which is underexplored in the context of e-commerce. The 7C framework can be used to assess not only website design but also the design of e-commerce shopping platforms.
۳۱.

Employability and Digitalization: A Bibliometric Analysis with Future Research Directions(مقاله علمی وزارت علوم)

کلیدواژه‌ها: employability digitalization Industry 4.0 SPAR-4-SLR

حوزه‌های تخصصی:
تعداد بازدید : ۸۹ تعداد دانلود : ۳۷
Digitalization is rapidly changing employment dynamics, demanding an understanding of how digital technologies impact employability. This study provides a comprehensive analysis of the relationship between digitalization and employability through a hybrid approach combining bibliometric analysis with a systematic theoretical review, based on the 4Ws framework (What, When, Where, and Why). Through the examination of thematic trends spanning the years 2010 to 2023, this study reveals significant domains in which digital transformation is influencing employability. The results underscore three primary thematic categories: the evolution of employment models catalyzed by digital technologies, the shift from Industry 4.0 to Industry 5.0, and theoretical advancements that concentrate on the informal economy alongside comparative analyses. This research contributes to addressing theoretical gaps regarding the lasting impact of digitalization on labor markets, with a particular focus on skill acquisition and job security. It presents targeted approaches for scholars, educators, and industry stakeholders to improve employability amid technological change. These include creating adaptive skill development programs, using AI in workforce management, and encouraging policies that enhance workers’ adaptability to new digital innovations. By presenting clear insights on how digitalization may affect employability, this research aims to enable more informed decisions for designing educational strategies and labor policies.
۳۲.

طراحی چارچوب مفهومی انتقال فناوری های پیشرفته در انقلاب صنعتی پنجم: رویکرد تحلیل مضمون(مقاله علمی وزارت علوم)

کلیدواژه‌ها: انتقال فناوری صنعت 5.0 فناوری های پیشرفته تحول دیجیتال

حوزه‌های تخصصی:
تعداد بازدید : ۴۷ تعداد دانلود : ۵۲
هدف: ظهور پارادایم صنعت 5.0 با تمرکز بر تعامل هوشمندانه انسان و ماشین، چالش های جدیدی را در فرآیند انتقال فناوری های پیشرفته ایجاد کرده است. هدف این پژوهش تبیین چارچوب مفهومی جامع برای انتقال فناوری های پیشرفته در پارادایم صنعت 5.0 است. روش پژوهش: این پژوهش با رویکرد پراگماتیسم و استراتژی استقرایی-قیاسی انجام شده است. از میان مقالات علمی منتشر شده بین سال های 2017 تا 2024 در پنج پایگاه داده معتبر، 84 مقاله با نمونه گیری هدفمند انتخاب شدند. داده ها با استفاده از رویکرد ترکیبی متن کاوی و تحلیل مضمون تحلیل شدند. در فاز کمی از الگوریتم های LDAو K-means برای خوشه بندی مفاهیم، و در فاز کیفی از روش تحلیل مضمون براون و کلارک استفاده شد. روایی یافته ها با استفاده از روش مثلث سازی و پایایی با محاسبه ضریب توافق کاپا (83/0) تأیید گردید. یافته ها: تحلیل متن کاوی به شناسایی پنج خوشه اصلی منجر شد که شامل فناوری های پیشرفته (54.4%)، انتقال فناوری (8.5%)، صنعت 5.0 (19.2%)، چالش ها و فرصت ها (11.4%) و سیاست گذاری و قوانین (6.6%) بودند. تحلیل مضمون منجر به شناسایی 40 مضمون اصلی و 163 مضمون فرعی شد که در قالب هشت مرحله اصلی انتقال فناوری دسته بندی شدند. این مراحل شامل شناسایی و گزینش، اکتساب، انطباق، جذب و تحلیل، کاربرد و بهره برداری، توسعه و بهبود، اشاعه، و یادگیری و نوآوری است. نتیجه گیری: موفقیت در انتقال فناوری های پیشرفته در صنعت 5.0 مستلزم ایجاد یک اکوسیستم پویا و تعاملی است که در آن عوامل فنی، سازمانی، انسانی و محیطی به طور همزمان مدیریت می شوند. اصالت/ارزش: این پژوهش برای نخستین بار با ترکیب رویکردهای متن کاوی و تحلیل مضمون، چارچوبی جامع برای انتقال فناوری در پارادایم صنعت 5.0 ارائه می دهد که فراتر از مدل های خطی موجود رفته و رویکردی اکوسیستمی ارائه می کند. این چارچوب می تواند مبنایی برای پژوهش های آتی در حوزه انتقال فناوری های پیشرفته و راهنمای عمل مدیران و سیاست گذاران باشد.
۳۳.

کاربست هوش مصنوعی و مدیریت دانش در بهبود حکمرانی شرکتی مطالعه موردی شرکت مپنا(مقاله علمی وزارت علوم)

کلیدواژه‌ها: حکمرانی شرکتی شرکت مپنا مدیریت دانش هوش مصنوعی

حوزه‌های تخصصی:
تعداد بازدید : ۵۸ تعداد دانلود : ۵۷
زمینه/هدف: یکی از موضوعات مهم در سال های اخیر مفهوم حکمرانی شرکتی است. این مفهوم به شیوه مدیریت و کنترل یک سازمان پرداخته است و هدف اصلی آن تضمین شفافیت، مسئولیت پذیری و انصاف در تصمیم گیری های شرکتی است. ازسوی دیگر، مدیریت دانش به سازمان ها کمک می کند تا از تجربیات و اطلاعات موجود بهره برداری کرده و به بهبود تصمیم گیری و نوآوری پرداخته شود. با ظهور هوش مصنوعی به عنوان یکی از فناوری های پیشرو، سازمان ها به سمت افزایش بهره وری هدایت می شوند. کاربست هوش مصنوعی و مدیریت دانش در حکمرانی شرکتی می تواند به بهینه سازی تصمیم گیری و افزایش کارایی سازمان ها منجر شود. سازمان های کشور همواره به یک نظام دانشی نیاز دارند که بتواند به صورت هماهنگ، منظم، هدفمند، مستمر و پویا عمل کند. یکی از این سازمان ها، شرکت مپنا است. روش پژوهش: رویکرد پژوهش حاضر کیفی است و با استفاده از روش تحلیل مضمون انجام شده است. روش های گردآوری داده ها در این تحقیق شامل مطالعات کتابخانه ای و مطالعات میدانی است. در مرحله بعد مدل مفهومی از روش تحلیل مضمون ارائه شده است. مدت زمان انجام مطالعات میدانی و طراحی، توزیع، جمع آوری و تحلیل داده های کیفی در بازه زمانی اسفند ۱۴۰۱ تا اسفند ۱۴۰۲ صورت گرفته است. یافته های پژوهش: براساس روش تحلیل مضمون، ابعاد و مؤلفه های مؤثر در مدیریت دانش در شرکت مپنا شامل بعد فردی، بعد سازمانی و بعد محیطی هستند. ابعاد و مؤلفه های مؤثر در هوش مصنوعی در شرکت مپنا شامل بعد زمینه ای، استراتژی های سازمان، بعد سازمانی، بعد بازاریابی، بعد ساختاری و بعد محیطی می باشد. نتیجه گیری: نتایج نشان می دهد که مدیریت دانش تأثیر قابل توجهی بر حکمرانی شرکتی در شرکت مپنا دارد. همچنین، هوش مصنوعی با ابعاد زمینه ای، استراتژی های سازمان، ابعاد سازمانی، بازاریابی، ساختاری و محیطی نیز بر حکمرانی شرکتی در این شرکت تأثیرگذار است. حکمرانی شرکتی می تواند مزایای قابل توجهی برای یک ساختار تجاری یا گروهی به ارمغان آورد. این نوع حکمرانی فرهنگ سازمانی را قوی تری و شفافیت را در تمامی سطوح سازمان فراهم می آورد و تضمین می کند که همه بازیگران نقش شخصی خود را در عملیات درک می کنند. با این رویکرد حکمرانی شرکتی تضمین می کند که تمامی اطلاعات واحد تجاری به روز و دقیق هستند و به هیئت مدیره این امکان را می دهد تا تصمیمات استراتژیک روشن و دقیقی را بر اساس داده های معتبر اتخاذ کند. 
۳۴.

تاثیر استراتژیهای مدیریت دانش بر عملکرد زنجیره تامین پایدار با میانجی گری نوآوری سازگار با محیط زیست (مورد مطالعه: کارکنان شرکتهای کوچک و متوسط استان سمنان)(مقاله علمی وزارت علوم)

کلیدواژه‌ها: استراتژیهای مدیریت دانش شرکتهای کوچک و متوسط عملکرد زنجیره تامین پایدار نوآوری سازگار با محیط زیست

حوزه‌های تخصصی:
تعداد بازدید : ۴۴ تعداد دانلود : ۴۸
زمینه/هدف: طی سالیان اخیر دررابطه با مدیریت دانش، زنجیره تأمین پایدار و نوآوری سازگار با محیط زیست مطالعات زیادی انجام شده است، اما در هیچ یک به بررسی روابط چندبعدی بین متغیرها و علی الخصوص موضوع نوآوری سازگار با محیط زیست، به عنوان مکانیسمی که رابطه استراتژی های مدیریت دانش و عملکرد زنجیره تأمین پایدار را میانجی می کند، پرداخته نشده است. هدف از پژوهش حاضر بررسی تأثیر استراتژی های مدیریت دانش بر عملکرد زنجیره تأمین پایدار با نقش میانجی گری نوآوری سازگار با محیط زیست است. روش پژوهش: بدین منظور از روش تحقیق توصیفی - پیمایشی استفاده شد و پرسش نامه محقق ساخته که از منابع موجود در پیشینه تحقیق تهیه شده و میزان روایی آن با استفاده از شاخص های روایی ظاهری، محتوایی، بار عاملی، روایی همگرا (AVE)، فورنل و لاکر، معیار ضریب تعیین، Q^2 و نیکویی برازش و پایایی آن از طریق آلفای کرونباخ و پایایی ترکیبی تایید گردیده بود، با روش نمونه گیری قضاوتی و هدفمند بین ۲۰۰ نفر از کارکنان شرکتهای کوچک و متوسط استان سمنان توزیع شد. یافته های پژوهش: بنا به نتایج حاصل از فرضیات فرعی پژوهش نیز مشخص شد استراتژی های مدیریت دانش بر عملکرد زنجیره تأمین پایدار (با ضریب اثر 0.178) و عملکرد نوآوری سازگار با محیط زیست (با ضریب اثر 0.301) و همچنین نوآوری سازگار با محیط زیست بر عملکرد زنجیره تأمین پایدار (با ضریب اثر 0.590) تأثیر مثبت و معناداری داشته است و بدین ترتیب تمامی فرضیات پژوهش تایید گردید. نتیجه گیری: نتایج حاصل از بررسی داده های پرسش نامه بر مبنای تحلیل های صورت گرفته با نرم افزارهای SPSS وSmart PLS ، مشخص نمود نقش نوآوری سازگار با محیط زیست به عنوان متغیر میانجی، بر روی تأثیر استراتژی های مدیریت دانش بر عملکرد زنجیره تأمین پایدار مثبت و معنادار (با ضریب اثر 0.498) بوده است.
۳۵.

Tools for Consumer Preference Analysis Based in Machine Learning(مقاله علمی وزارت علوم)

کلیدواژه‌ها: Machine Learning Data Analysis Pandas Data set

حوزه‌های تخصصی:
تعداد بازدید : ۱۳۶ تعداد دانلود : ۸۵
Today, users generate various data increasingly using the Internet when choosing a product or service. This leads to the generation of data about the purchases and services of various consumers. In addition, consumers often leave feedback about the purchase. At the same time, consumers discuss their attitudes about goods and services on social networks, messengers, thematic sites, etc. This leads to the emergence of large volumes of data that contain useful information about various manufacturers of goods and services. Such information can be useful to both ordinary users and large companies. However, it is practically impossible to use this information due to the fact that it is located in different places, that is, it has a raw, unstructured character. At the same time, depending on the target group of users, not the entire data set is needed, but a specific target sample. To solve this problem, it is necessary to have a tool for structuring information arrays and their further analysis depending on the set goal. This can be done with the help of various frameworks that use methods of machine learning and work with data. This work is devoted to elucidating the problem of creating means for evaluating consumer preferences based on the analysis of large volumes of data for its further use by the target audience.  The goal of the development of big data analysis systems is obtaining new, previously unknown information. The methodology of application of algorithms of work with large data sets and methods of machine learning is used, namely the pandas library for operations on a data set and logistic regression for information classification As a result, a system was built that allows the analysis of lexical information, translate it into numerical format and create on this basis the necessary statistical samples. The originality of the work lies in the use of specialized libraries of data processing and machine learning to create data analysis systems. The practical value of the work lies in the possibility of creating data analysis systems built using specialized machine learning libraries.
۳۶.

Developing an Innovative Technology Model for Hotel Reception Desks in Iran(مقاله علمی وزارت علوم)

کلیدواژه‌ها: Innovation Technological innovation Hotel Service Reception Desk Hotel

حوزه‌های تخصصی:
تعداد بازدید : ۲۳۰ تعداد دانلود : ۱۸۳
In an era where customer expectations are rapidly evolving, enhancing the efficiency of hotel reception services in Iran is crucial for the growth of the hospitality sector. Recent research highlights the importance of digital transformation in improving service delivery and operational efficiency in the hospitality industry. These studies indicate that technological advancements can significantly streamline operational processes, improve customer satisfaction, and foster a competitive advantage in the hospitality industry. This research presents a technological innovation model aimed at modernizing reception desk services, addressing the pressing need for improvement in this area. Using an interpretive paradigm and an inductive approach, we conducted a qualitative study that incorporated a systematic review. Subsequently, the structures and components were extracted from the studies through qualitative coding. Our findings, derived from a review of 54 studies, revealed 295 open codes distilled into 15 constructs and four main components. This study highlights the significant impact of technological innovation on reception services, emphasizing the roles of ease of use and perceived usefulness in the technology adoption process. These insights provide essential guidelines for advancing reception desk technologies within the Iranian hotel industry, ultimately contributing to enhanced service quality.
۳۷.

Studying the Requirements of the Digital Interactive and Transformational Model in the Virtual Space at the Islamic Republic of Iran Broadcasting Organization(مقاله علمی وزارت علوم)

کلیدواژه‌ها: Broadcasting Organization of the Islamic Republic of Iran Digital Transformation Interactive model National media virtual space

حوزه‌های تخصصی:
تعداد بازدید : ۲۳۹ تعداد دانلود : ۱۷۲
Purpose: The current research aims to develop a model for digital transformation within the virtual space of the Broadcasting Organization in accordance with increasing the functionality of the virtual space among the audiences. Due to the lack of a model in this field in order to benefit from it, this research aims to extract the components of the model using the thematic qualitative method or theme analysis.Method: The statistical population includes 15 experts in media management and virtual space. To measure reliability, intra-subject agreement method (reliability between two coders/evaluators) was used to determine the reliability of the texts, and the reliability coefficient obtained for all three interviews and the total reliability coefficient was (0.87), surpassing the minimum acceptable threshold of 0.7, confirming the reliability of the codings and the interviews.Findings: The findings indicate that the model requirements consist of 6 main categories, 9 sub-categories, and 38 sub-categories essential for creating digital transformation and enhancing the interaction of the Islamic Republic of Iran's radio and television with the virtual space. The main categories of the model encompass content production, comprising six main components: content production (with six indicators), opportunities and threats (with 11 indicators), strengths and weaknesses (with 13 indicators), digital transformation components (with five indicators), platforms of introduction (with seven indicators), and consequences of digital transformation (with four indicators), totaling 46 indicators.Conclusion: The results show that establishing a favorable interaction in the virtual space and new media by creating a digital transformation in the national media is effective in attracting the audience and improving the performance of the national media and ensuring the satisfaction of the stakeholders.
۳۸.

An Intelligent Heart Disease Prediction by Machine Learning Using Optimization Algorithm(مقاله علمی وزارت علوم)

کلیدواژه‌ها: Optimization algorithm Cardiovascular disease Prediction Gradient Descent Machine Learning Neural Networks deep learning

حوزه‌های تخصصی:
تعداد بازدید : ۴۱۷ تعداد دانلود : ۲۸۳
Heart and circulatory system diseases are often referred to as cardiovascular disease (CVD). The health and efficiency of the heart are crucial to human survival. CVD has become a primary cause of demise in recent years. According to data provided by the World-Health-Organization (WHO), CVD were conscientious for the deaths of 18.6M people in 2017. Biomedical care, healthcare, and disease prediction are just few of the fields making use of cutting-edge skills like machine learning (ML) and deep learning (DL). Utilizing the CVD dataset from the UCI Machine-Repository, this article aims to improve the accuracy of cardiac disease diagnosis. Improved precision and sensitivity in diagnosing heart disease by the use of an optimization algorithm is possible. Optimization is the process of evaluating a number of potential answers to a problem and selecting the best one. Support-Machine-Vector (SVM), K-Nearest-Neighbor (KNN), Naïve-Bayes (NB), Artificial-Neural-Network (ANN), Random-Forest (RF), and Gradient-Descent-Optimization (GDO) are just some of the ML strategies that have been utilized. Predicting Cardiovascular Disease with Intelligence, the best results may be obtained from the set of considered classification techniques, and this is where the GDO approach comes in. It has been evaluated and found to have an accuracy of 99.62 percent. The sensitivity and specificity were likewise measured at 99.65% and 98.54%, respectively. According to the findings, the proposed unique optimized algorithm has the potential to serve as a useful healthcare examination system for the timely prediction of CVD and for the study of such conditions.
۳۹.

Evaluating the Role of the Base Volume in the Liquidity of Digital and Knowledge-Based Companies' Stocks in the Tehran Stock Exchange(مقاله علمی وزارت علوم)

کلیدواژه‌ها: Base volume Digital Companies Digital Economy Knowledge-Based Companies Knowledge-based economy Liquidity

حوزه‌های تخصصی:
تعداد بازدید : ۲۲۷ تعداد دانلود : ۱۷۸
Purpose: This research aimed to identify some of the existing financial frictions in the Iran's digital economy. In particular, based on cases taken from digital and knowledge-based companies, it empirically investigated the importance of the role of base volume in the liquidity of those companies' stocks in Tehran Stock Exchange.Method: To evaluate the empirical implications of applying the base volume in daily stock market practice, retrospectively a quantitative estimate of the base volume was implied by the economic model within the rules imposed by the market regulator via MATLAB software programming. Then, using the Generalized Method of Moments (GMM), the effects of the estimated base volume, percentage of free-floating share, securities turnover, and the ratio of transaction volume to base volume on Amihud index were econometrically studied for the selected companies during the period 2015-2020.Findings: The findings indicate that the applying base volume on the selected digital and knowledge-based companies has had a negative effect on the calculation of the final price and on the liquidity of studied knowledge-based companies. Also, the results of using the machine learning method (decision tree) showed a importance coefficient of 32.6% for the base volume on the Amihud index of the selected companies.Conclusion: Our results suggest that base volume as an idiosyncratic financial friction induced by Iranian stock market regulator has aggravated the illiquidity of studied digital and knowledge-based companies and thereby could have raised the financing costs for those companies. This would ultimately impede those companies’ growth prospect.
۴۰.

An Integrative Model of Influencing Factors for E-Shopping Using Mobile Apps among Young Iranian User(مقاله علمی وزارت علوم)

کلیدواژه‌ها: Electronic shopping Intention to use Mobile Applications Shopping apps Young Iranian Users

حوزه‌های تخصصی:
تعداد بازدید : ۲۱۸ تعداد دانلود : ۱۶۰
Purpose: The growth of Smartphone applications has led to the development and transformation of business sector. The present work aimed to assess factors influencing the intention to use shopping applications.Method: A structural model was formulated for analyzing and testing the existing factors among shopping application users. The statistical population of the research comprised of the users of shopping applications in a public university in Iran. This study employed a questionnaire survey, which consisted of two sections. The first section included general demographic details of the target respondents, while the second section comprised 30 items to measure the constructs of our conceptual model. All items of constructs were adopted from previous literature. A total of 288 questionnaires provided usable data.Findings: The results revealed that factors such as Convenience, Perceived Ease of Use, Trust, and Perceived usefulness affect the intention to use shopping applications, while factors such as Perceived Innovativeness, Perceived Risk, Perceived Enjoyment, and Social Influence were found to be non-influential.Conclusion: This research was conducted based on a comprehensive review of the research literature and identification of influential constructs with the approach of creating an integrated model of factors affecting the intention to use shopping applications. Based on the research results, focusing on ease of use and creating the experience of perceived usefulness along with the use of tools that lead to the improvement of trust is critical for practitioners.

پالایش نتایج جستجو

تعداد نتایج در یک صفحه:

درجه علمی

مجله

سال

زبان